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Results are presented of computations of the flow of a homogeneous gas in the 
spatial laminar boundary layer on blunt bodies of different shape with a perme- 
able surface around which are flows at angles of attack and slip. 

Investigation of the fundamental flow characteristics in a three-dimensional boundary 
layer on bodies around which a supersonic gas flows is necessary for the solution of many 
applied problems. The papers [1-8] are devoted to a study of this problem. Solutions are 
obtained in [1-4] for the boundary layer equations around bodies with an impermeable surface. 
The case of a permeable surface was examined in [5-8]; however, the computations were per- 
formed here either in the neighborhood of the plane of symmetry [5] or when there are two 
planes of symmetry in the flow [6-8]. At the same time it is interesting to analyze the in- 
fluence of body geometry and gas injection from the surface on the heat and mass transfer 
characteristics for the general case of the flow around a body at angles of attack and slip. 

Let us consider the flow of a homogeneous Compressible gas in a three-dimensional lami- 
nar boundary layer on blunt bodies with a permeable surface around which a hypersonic gas 
flows. In a curvilinear (~, ~, ~) coordinate system in which ~ is measured along the normal 
to the body, and ~, ~ are selected in a certain way on the surface, the equations describing 
this flow have the following dimensionless form [4] : 
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Here the quantities A i, Bi depend in a known manner on the pressure distribution along the 
surface and on the component g~B [ 4]. The system (i) is solved under the following boundary 

conditions: 

= O: u = w = O, (gv)~ ~ G(~, ~), T = T~(~, ~), (2)  

~ = ~ :  u=ue(~,  n), w=wo(~ ,  ~), T = T e ( ~ ,  ~). (3)  

We select the (~, q) coordinate system on the body surface in the following way. Let 
{x i} be a Cartesian coordinate system in which the equation of the surface of the stream- 
lined body has the form F(x*, x 2, x 3) = 0 and l(cos 6, sin ~.sin fl, sin ~.cos 6) is the unit 
vector that agrees with the free stream velocity vector in direction. Furthermore, we go 
over to another Cartesian coordinate system {z m} by the formula 
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x -- x o = A(Az),  (4) 

where A is a diagonal matrix defining the compression (tension) transformation, A is a matrix 

giving the rotation of the coordinate axes in such a manner that the axis z I would be directed 
along the internal normal of the body. We introduce a spherical coordinate system with center 
on the z I axis at the point B: 

! 
z~ - - z~=- - rcos (A~) ,  zZ =- r s i n (A ~)cos~ ,  z ~ = r s i n ( A ~ ) s i n ~ .  (5) 

The variable q varies between 0 and 2v in the coordinate system selected in this manner, and 
all the geometric characteristics of the surface and the coefficients of the system (i) are 
periodic (of period 2~) functions in q. Therefore, the desired function in (i) will also be 
periodic in q. The periodicity condition for any of them is written in the form 

~ln_o - O~ Oq ,~=~" (6) 

To integrate the problem (1)-(3) numerically it is convenient to go over to new depen- 
dent and independent variables by means of the formulas 
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where k is a certain constant defined below. The original system (i) in the variables (7) 

takes the form (we omit the superscript *) 
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The coefficients of the system (8) are defined as follows: 
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In the new variables the boundary conditions 

for ~ ~ 0 

u = ~ = O ,  
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(2) and (3) have the form: 
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Since the coordinate system (~, n, ~) is degenerate at the critical point s = O, a non- 
degenerate curvilinear coordinate system (y*, y2, yS) with origin at the stagnation point, 
whose axes Oy I and Oy 2 lie in the tangent plane to the body at this point and are directed, 
respectively, along the directions of principal curvature of the body surface while the axis 
Oy 3 is along the normal to the body, was used to obtain the solution of the spatial boundary 
layer equations in the neighborhood of the stagnation point. The coefficients of the system 
(9) at the stagnation point in this coordinate system take on the following values 

(12) 

After finding the solution u ~ w ~ 8 ~ of the system of equations (8)-(11) in the {yi} coordin- 
ate system, a conversion is made to the coordinate system (~, ~, ~) by means of the formulas 

u~ ~ o o62  

6, + w~ ~ ' 
(13) 

w(O, ~, ~)= u ~ l + w ~  , 0(0, n, ~)=0% 

where ~,, 6u, y,, Yu are the coupling coefficients of the unit vectors of the bases of the 
coordinate systems (y*, y~) and (~, ~) in a plane tangent to the surface at the stagnation 
point. 

The constant k introduced in the change of variables (7) was selected from the condi- 
tion that the normal coordinates in the systems {yi} and (~, n, ~) agree at the stagnation 
point, 

For the numerical solution of system (8) with the boundary conditions (i0) and (ii), 
a difference scheme was used that is implicit in the direction ~ and has the order of approx- 
imation O(A~) + O(An) 2 + O(A~) ~, which is a generalization of the scheme in [9] to the three- 
dimensional case. The derivatives in the ~ direction were calculated to first-order accuracy 
by using "backward differences" while the derivatives with respect to the angular coordinate 
n were approximated by central differences on the basis of the solution obtained in the pre- 
ceding global iteration in the running neighborhood $ = const. Then each third-order equa- 
tion in the variable ~ was reduced to a system of three first-order equations by the intro- 
duction of new independent functions, and then linearized in an appropriate manner and approx- 
imated by finite differences to O(A~) ~ accuracy. 

The pressure distribution along the surface was considered known in the computation of 
the parameters on the outer boundary of the boundary layer and was found by the Newton 
formula. The quantities Ue, We, T e were determined from the system of equations that could 
be obtained from (i) by omitting the derivatives with respect to ~ and that was solved 
numerically by using a finite-difference scheme with accuracy O(A$) + O(An) 2 of the approxi- 
mation. The obtained system of transcendental equations was linearized with respect to the 
corrections to the desired functions and was solved by the cyclic factorization method [10] 
in the coordinate n. 

For (0v) w E 0 the last equation in the boundary conditions (i0) has the trivial solu- 
tion ~z = ~u = 0. In the case of a permeable surface (or) w = G(~, n) > 0, to determine ~*w = 
~2w = ~w($, n) this equation was approximated by finite-differences with the order O(A~) + 
0(An) 2 and was also solved numerically by the cyclic factorization method. 

A flow was considered at angles of attack and slip around three-axis ellipsoids with 
different semiaxes for which the equation of the surface in dimensionless coordinates referred 
to the length of the semiaxis in the Ox* direction had the form 

. (x ~ -  1 ) 2 +  , + \ - - - ~ ,  = 1 ( 1 4 )  

In this case the diagonal terms of the matrix A in (4) equaled the ellipsoid semiaxes and the 
equation of its surface in the spherical (~, ~, r) coordinate system had the form r = i, which 
shortened the amount of calculational work in determining guB- The function A = A(~) in (5) 
was selected in such a manner that the normal to the surface of the streamlined body on the 
line E = i was perpendicular to the vector i. The governing parameters of the problem were 
variated in the following ranges 
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Fig. i. Dependences of the distribution 
Cq ~ on the longitudinal coordinate ~ for 
different a and b in the sections q = 
const for e w = 0.i, G = 0: 1-3) n = --1.57, 
--0.69, 0, respectively; a) a = 0.3, b = 
0.7; b) a = 3, b = 2; c) a = 0.3, b = 2. 

O < b ~ 3 ,  O < f a ~ 3 ,  0 ~ r  ~ 0 ~ B : : ~ 4 5  ~ 7 : : 1 , 4 ,  (15) 
% ~ 0 , I ,  ~ = 0 , 5 ,  O ~ ( g v ) w - - G = = c o n s t ~ ] 2 ,  a ~ 0 , 7 1 .  

Computations showed that the proposed numerical method of solving the spatial laminar 
boundary layer equations on a permeable surface possesses stability and is effective and 
economical. The mean time for a computation on a B~SM-6 electronic computer is 70 min for 
one variant on a 30 x 26 x 15 mesh (in the g, n, ~ directions, respectively). 

The velocity and temperature profiles across the boundary layer as well as the friction 
and heat-transfer coefficients on the body surface were determined during the computations, 
and the expressions for these coefficients in the variables (7) have the form 

Ou r  ~p 0 0  c~ = 2kFp---~-- , c n = 2k~p- - -~ - ,  cq ~ k - -  (16) 

We now turn to a discussion of the numerical computations performed, for which certain 
results are presented in Figs. 1-3. Analysis of the solutions obtained showed that the dis- 
tributions of absolute values of the friction and thermal flux coefficients along the body 
surface depend strongly on its geometry, surface temperature, and gas injection through it. 
Thus, for example, the difference between the magnitude of Cq computed for ew = 0.i and the 
value of this same parameter for ew = 0.5 is 40-60% depending on the point on the surface and 
its shape; an increase in G from 0 to 1 (other conditions remaining equal) resulted in a 50- 
60% diminution in Cq. At the same time computations showed that the heat flux distribution, 
referred to its value at the stagnation point, is considerably more conservative and depends 
much more weakly on ew and G. In particular, the relative distributions 

c~ (2, ~l) c~ c, (~, ~) c~ cq (~, ~) c~ - -  ~ , , = (17) 
c~(O, ~) c~(O, ~) c~(O, ~) 

are practically independent of the surface temperature 0 w for G = 0 for a cooled surface 
(ewe0.3). On the whole, comparisons performed in the above-mentioned range of variation 
of the body shape, angles of attack and slip showed that for G = 0 the change in cq ~ as ew 
varied between 0.05 and 0.3 did not exceed 10%. Gas injection through the surface (for G = 
const ! I) conserves the mentioned regularity, although the range of variation of Cq = in- 
creases somewhat (to 15%) as ew varies. 

At the same time the dependence of the relative heat flux distribution Cq ~ on the 
angles of attack and slip as well as on the body shape, determined in this case by the ellip- 
soid semiaxes a and b, remains sufficiently strong. If a = B = O, then there are two planes 
of symmetry in the flow in which the solutions are independent of each other while the heat 
flux distribution cq ~ has local extremums in these planes. The nature of these extremums 
here depends on a and b. Figure 1 illustrates this deduction where it is seen that for a = 
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Fig. 2. Distribution of Cq = along an impermeable ellipsoid sur- 
face (I -- a = 0.3, b = 0.7; II -- a = 3, b = 2) for e w = 0.25, 
G = 0, ~ = B = 45 ~ 

0.3, b = 0.7 the stagnation point is a local maximum point in the heat flux distribution, a 
local minimum of cq ~ is at the stagnation point for a = 3, b = 2, and the stagnation point 
turns out to be a saddle point in the Cq ~ distribution for a = 0.3, b = 2 (the heat flux 
in the plane x10x 3 drops during standoff from the stagnation point and grows in the x~Ox 2 
plane). Such a dependence of the heat flux distribution in the neighborhood of the stagna- 
tion point has a sufficiently explicit physical meaning. Indeed, it is known that the heat 
flux drops as the gas temperature diminishes on the outer boundary layer boundary and grows 
as the energy liberation increases within the boundary layer because of viscous dissipation, 
which is, in turn, inversely proportional to the radius of longitudinal curvature of the body 
contour in this plane. In this connection, for a < i, b < 1 when these radii in the planes of 
symmetry grow with distance from the stagnation point, the maximum heat flux is localized in 
them. If a and b are sufficiently large (for a, b ~ 1.3), then the radii of curvature drop 
monotonically as the distance from the stagnation point increases, and magnification of the 
viscous dissipation starts to predominate over the reasons causing diminution of the heat 
flux, whereupon the stagnation point becomes a local minimum point in the Cq ~ direction. 

For nonzero angles of attack and ~ = 0 only one plane of symmetry remains in the flow 
and the pattern of the Cq ~ distribution is still more complicated. If a and b are such that 
a maximum heat flux is realized for a zero angle of attack at the stagnation point, then for 
angle-of-attack flow around this same body the maximum remains in the plane of flow symmetry, 
but is shifted from stagnation point towards diminution of the longitudinal radius of curva- 
ture of the body contour in its plane of symmetry. As the angle of attack increases, the 
value of this maximum in Cq ~ grows and it is itself moved further from the stagnation point. 
The absolute value of the heat flux as the angle of attack grows will here drop at both the 
stagnation point and at the local maximum point for Cq ~ If a and b lie in the range when 
the stagnation point is a local minimum point for ~ = 0, and there are local maximums on the 
body lateral surface in its planes of symmetry, then an increase in the angle of attack that 
keeps all the local extremums in the plane of flow symmetry shifts their location. In partic- 
ular, the local minimum is shifted from the stagnation point towards an increase in the longi- 
tudinal curvature of the body contour; one of the local Cq ~ maximums that is diminishing in its 
magnitude approaches the stagnation point while the other recedes from it and vanishes for a 
sufficiently high angle of attack. The absolute value of the heat flux at both the stagnation 
point and the local maximum point here grows as the angle of attack grows. 

If the flow around the body occurs at nonzero angles of attack and slip, then a further 
complication is observed in the flow structure in the boundary layer and the heat flux distribu- 
tion pattern along the surface: there are no planes of symmetry in the flow and the Cq ~ dis- 
tributions are substantially spatial in nature (see Fig. 2). The computations showed that in 
this case the Cq ~ distributions depend on the circumferential coordinate ~ in a nonmonotonic 
manner and have a characteristic maximum whose location depends mainly on the body shape. For 
a < i, b < 1 (flow around a prolate ellipsoid) the maximum is on the leeward side of the body, 
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Fig. 3. Distribution of Cq ~ on an ellip- 
soid (a = 0.3, b = 0.7) for ~w = 0.25, 
G = 2, ~ = B = 45 ~ �9 

and for sufficiently large values of a and b is shifted toward the windward side of the sur- 
face. The relative friction coefficient c~ ~ behaves in an analogous manner; moreover, this 
effect is much stronger for it. On the whole, analysis of the obtained numerical solutions 
permits making the deduction that the locations of the mentioned maximums in the Cq ~ and c~ ~ 
distributions are close to each other and are in the neighborhood of the point with maximal 
mean surface curvature. 

There remains the question of the influence of injection on the fundamental flow char- 
acteristics. As computations showed, injection influences the flow structure in the boundary 
layer sufficiently strongly. As it grows, the velocity and temperature profiles become less 
inflated, the boundary layer thickness grows, and for G = i it increases almost twice as com- 
pared with the case of an impermeable surface. An increase in injection results in both 
magnification of the secondary flow intensity (analogously to the case of flows with two 
planes of symmetry [6, 7]) and in an increase in the nonmonotonicity in the dependence of the 
boundary layer thickness on the circumferential coordinate ~. As already noted, gas injec- 
tion results in a significant drop in the absolute values of the friction and heat transfer 
coefficients on the body surface. At the same time, the influence of injection on the rela- 
tive quantities c~ ~ Cq ~ is much more weakly expressed. In particular, for small and moder- 
ate values of the gas mass flow through the surface, the injection does not alter the qualita- 
tive pattern of the behavior of c~ ~ and Cq ~ As is seen from Fig. 3, the dependences mentioned 
have the characteristic maximum during injection exactly as on an impermeable surface. The 
location of this maximum is independent of G in practice and its value grows as the gas mass 
flow rate through the surface increases. 

NOTATION 

~L, nL, ~L/R~e, dimensional curvilinear coordinates coupled to the surface of the stream- 
lined bod~L, characteristic linear dimension of the problem; Re = poVoL/p, Reynolds number; 
Vo = ~2cpTo; Cp, coefficient of specific heat; uVo, wVo, vVo//~, physical components of the 
velocity vector in the $, n, ~ directions, respectively; PoP, PoP, ToT, PoP, density, pres- 
sure, temperature, viscosity coefficient; ~ Prandtl number; ~, exponent in the dependence of 
the viscosity on the temperature, covariant component of the fundamental metric tensor; 

2. g = g1~g22 -- g12, cos ~ - g12/~g~ A = A(~), normalizing function in the coordinate $; 
R~, R2, principal radii of curvature of the body at the stagnation point; ~, angle of attack; 
~, angle of slip; y = Cp/Cv, adiabatic index. The subscripts e, w, 0 refer, respectively, to 
parameters on the outer boundary layer boundary, on the body surface, and on the outer bound- 
ary layer boundary at the stagnation point (point of maximum pressure on the body surface). 
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EFFECT OF BRIEF THERMAL PULSES ON INTENSITY OF HEAT LIBERATION 

IN HELIUM BOILING 

V. K. Andreev, V. I. Deer, 
A. N. Savin, and K. V. Kutsenko 

UDC 536.248.2:546.291 

Results are offered from a study of heat liberation in boiling of liquid helium 
upon a heated wall under impulsive thermal action conditions. 

Bubble boiling of helium is characterized by significant ambiguity in the amount of 
superheating of the heat liberating wall, given one and the same heat load on the heat ex- 
change surface. Thus, it was shown in [1-4] that for slow (quasisteady-state) increase in 
thermal flux density the wall superheatings recorded at specified q values may be several 
times higher than upon subsequent reduction in thermal load. This is caused by the fact [4] 
that in the course of q reduction a significant fraction of the previously (upon increase in 
q) activated vapor formation centers continue to act, providing a high heat exchange intensity. 

In [5-7] a reduction in superheating of heat liberating wallwas observed in heliumboil- 
ing for the case of action upon the wall by a brief light pulse. The authors of those 
studies assume that upon absorption of the light pulse energy the heat liberating surface 
emits photoelectrons, which act as vapor bubble formation centers. An increase in the number 
of boiling centers leads to intensification of heat exchange and reduction in wall super- 
heating. 

The present study examined the effect of short thermal pulses on heat liberation into 
helium boiling under large volume conditions at atmospheric pressure. The experiments were 
performed with the working chamber described in [8]. The heated wall consisted of a ribbon 
of brass foil 65 • 4 • 0.05 mm in size, thermally isolated on one side. The foil was heated 
by direct passage of electric current. 

The operating section Rw (see Fig. I) was connected in series with reference resistor R r 
to the input of power amPlifier PA. The current flowing in the circuit was set by current 
regulator CR. The temperature of the heat liberating surface was determined by a low-inertia 
germanium film resistance thermometer T. The voltage drop across the thermometer was applied 
to the special amplifier A, the signal from which was recorded by loop oscilloscope LO. A 
simultaneous recording was made of the current being fed to the working section heater. Cur- 
rent pulses were created by current generator G, a type G5-54. Current change over the period 
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